

Decoding frequency-specific tACS modulation of fMRI network connectivity

Tibor Auer¹, Romy Lorenz^{2,3}, Ines Violante¹

Biotechnology and Biological Sciences Research Council

- 1. School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- 2. Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- 3. MRC Cognition and Brain Sciences Unit, Cambridge, Cambridgeshire, United Kingdom

Introduction

Paradigm shift

Recent studies emphasize connectivity rather than regional specificity. Cognition emerges from coordinated interplay between brain regions.

Modulating functional connectivity could shape cognitive functions.

Transcranial Alternating Current Stimulation (tACS)

tACS can modulate functional connectivity. tACS shows a dependency on trait- and state-related factors

The choice of tACS stimulation parameters to modulate specific functional connectivities is not trivial.

Questions

Does different stimulation frequencies impact brain dynamics differently? Can this variability be measured using imaging approaches that can verify the effects of stimulation?

Methods

Cognitive task:

Repetitive Match-to-Sample (spatial working memory)

HD-tACS

- Dual-channel (F4, P4)
- Intensity: <=1 mA per channel
- Frequencies: 5, 10, 20, 60 Hz Block Design

fMRI

- Siemens TIM Trio 3T
- MB-EPI, 1.8 s TR
- 2.5 mm iso, full-brain coverage

Orange (Frontoparietal)

Data processing and analysis

- Framework: automatic analysis 5.8
- Tools: SPM12, CONN (connectivity), TDT (multivariate)

Modelling

- Activation
- Task-evoked response
 - Stimulation as additive effect (each frequency)
 - Extended modelling of motion
- Connectivity: ROI-ROI gPPI
- Multivariate: SVM, L1 regularisation, LOO CV
 - Voxels within 7 bihemispheric networks
 - ROIs within 7 bihemispheric networks
 - ROI-ROI connectivity within 7 bihemispheric networks

Highlights

Framework to investigate the frequency-specificity of the tACS modulation, the prequisite for optimisation of the stimulation.

Behaviour and activation show no/little frequency-specificity

not suitable for optimisation

Connectivity within and between the *Dorsal Attention* and the *Control* networks shows frequency-specific information \rightarrow which also relates to behaviour.

good candidate for optimisation

Results

Behaviour

Strong effect of (re)match

- Increased reaction time
- Reduced accuracy and d-prime

Activation

Univariate

Salient, Limbic, and Visual networks

Frequency-specific modulation in the *Visual* network

Decoding

- Voxels within 7 bihemispheric networks: None
- ROIs within 7 bihemispheric networks: No multiclass

Connectivity

Decoding (ROI-ROI connectivity within 7 bihemispheric networks)

	multiclass	STIM10-STIM5	STIM20-STIM5	STIM5-STIM60	STIM10-STIM20	STIM10-STIM60	STIM20-STIM60
DorsAttn	0.000312207	0.25363128	0.049948742	0.290884146	0.02511452	0.160292771	0.100031808
Cont	4.32413E-06	0.176420617	0.049948742	0.303730892	0.022695455	0.189957161	0.102512472

Feature analysis (parwise comparison corrected for multiple tests)

Between-network (DorsAttn ↔ Cont) connections 5 Hz vs 20 Hz 10 Hz vs 20 Hz 5 Hz vs 10 Hz

Correlation with behaviour

- 5 Hz vs 10 Hz network (*Control* and *DorsAttn* \leftrightarrow *Cont*):
 - Frequency-specific modulation (10 Hz) explains slower response for match #1
- 5 Hz vs 20 Hz network (*DorsAttn, Control* and *DorsAttn* ↔ *Cont*):
 - Frequency-specific modulation (20 Hz) explains slower response for match #1
- 10 Hz vs 20 Hz network (*DorsAttn*, *DorsAttn* ↔ *Cont*):
 - Frequency-specific modulation (20 Hz) explains faster response for match #2

References

- 1. Alekseichuk, I., et al. (2016). Current Biology
- 2. Cusack, R., et al. (2015). Frontiers in Neuroinformatics
- 4. Polanía, R., et al. (2018). Nature Neuroscience
- 5. Schaefer, A., et al. (2018). Cerebral Cortex
- 6. Violante, I. R., et al. (2017). ELife 3. Hebart, M. N., et al. (2015). Frontiers in Neuroinformatics