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What is the role of the cerebellum in visuo-motor adaptation?

Adaptation to a 10°

rightward optical shift (1) BASELINE (2) PRISM EXPOSURE (3) POST EXPOSURE

effect was functionally specific: no e polarity-specific (no
W by change in deadaptation (A). No effect of anodal tDCS®)
kinematic markers have been suggested to e | change in after-effect (B)(all p >.05) and functionally-
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analysis of the whole movement trajectory:
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How does the brain adapt to perturbations?
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Methods

Design: Recordings of trajectories:
* sample: n =9 healthy participants (mean age: 35 + 9 years) * ultrasound emission

* within-subject design: anodal, cathodal and sham stimulation in device (Zebris) Adaptation Deadaptation Adaptation Deadaptation
counter-balanced order
* double-blinded tDCS
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3. Cathodal tDCS disrupted
Stimulation: 3 slow learning processes

. 2 : .
2mA, 25cm- electrodes, Cathodal tDCS will disrupt adaptation by impairing fast learning processes during prism exposure

Protocol (Prism adaptation): CLP: Closed-loop pointing (visual error feedback) 20min (adaptat|0n phase) (Iearning/retention of the fast system).

OLP: Open-loop pointing (no error feedback) the estimated . Model fitting shows that
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Grimaldi et al. (2016)

(CLP and 6 CLP and 6 OLP blocks in | 6 CLP and 6 OLP blocks
OLP) alternating order in alternating order
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Analysis

Exploratory analysis: State-space modelling of the kinematic data
1. Analysis of endpoint errors: pascline late middle 3. State-space modelling of endpoint

* repeated-measures . errors® / kinematic markers: Sham tDCS (group fit) Cathodal tDCS (group fit) Sham  Cathodal
ANOVAs of block averages Terminal |/ * fitto group / individual data > 07880 | 2 - 0.8345 error in the terminal reach direction Smith etal e(llzo((z)g)14P)L(l)\lse5;‘oollorggge

* model comparison based on AIC over. AIC = 2354 AIC=2114 The model captures the compensatory leftward Spanico et al. (2016), Brain and Cognition
ranic |
' shift of the initial direction observed during later Jolaliet al. (2017), Journal of Neurophysiology

compensatio.n
bl(.)CkS of adaptatlon ,(Ses flg' green) Figures reproduced with permission from:
this ,,overcompensation” — exaggerated leftward Petitet et al. (2018), Neuropsychologia
e pointing during the initial reach phase —is how Grimaldi et al. (2016), The Neuroscientist
Irita PSSO participants normally correct their errors during
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Data terminal the late phase of adaptation (flg sham) Fun.ded by MRC studentship to VS and Wellcome/Royal
——Model fit terminal Society SHDF to JOS (215451/Z/19/7).

Terminal fast system Overcompensation cathodal tDCS seems to disrupt this mechanism
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e(n) = f(n) — x(n) Fast system:
x(n) = x;(n) + x,(n) high

. . . x;(n+1)= Af- x;(n) + Bf-e(n) responsitivity to
2. Analysis of kinematic o+ 1) = A - x,(n) + B.-e(n) errors, poor

markers : Br > Bg, Ag > Af retention

* extraction based on x(n) — Motor output on trialn
VE|OCity profile2 X1,X, — States of the two systems Slow system:

e(n) — error on trial n responds
repeated-measures B — Learning rate weekly to error, Author correspondence:
ANOVAs of block averages A — Rotention rate retains well Xis(n+1) = Ao Xis(n) + Bisei(n) + Bigsererminat(M) == | oo inal error of previous trial (- IMtiah t: terminal, s: slow) verena.sarrazin@psych.ox.ac.uk
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Adaptation Deadaptation Adaptation

The initial direction of the reach trajectory




