

Combined tACS-TMS study:

Effects of phase-dependent and frequency-selective M1 inhibition

Aneta Dvorakova^{1,2}, Aikaterini Gialopsou¹, Edward de Haan², Stephen R. Jackson^{1,3}

1 School of Psychology, University of Nottingham, UK, 2 Donders Institute, Netherlands, 3 Institute of Mental Health, University of Nottingham, UK Aneta.Dvorakova@nottingham.ac.uk

Background

Oscillatory bands in M1 (primary motor cortex)

- ➤ Drive inhibition (alpha/beta) and excitation (gamma) (1)
- ➤ Reflect interaction of **inhibitory** interneurons and pyramidal cells (2)

Specific neuronal frequency preference (3,4)

- ➤ Pyramidal cells <30 Hz
- ➤ Inhibitory interneurons >30 Hz

tACS (transcranial alternating current stimulation) (5)

Can entrain

- ➤ Neuronal spike timing
- ➤ Spiking **phase** of neurons
- ➤ Modulate excitation and inhibition

TMS (transcranial magnetic stimulation) measures (6)

Single-pulse (SP) TMS

➤ Corticospinal excitability : mediated by pyramidal cells

Paired-pulse TMS

➤ Short Intracortical Inhibition (SICI): mediated by GABA₄ergic inhibitory interneurons)

tACS-TMS studies in M1 show **(1, 2, 7, 8)**

tACS modulation is

- > Frequency-dependent
- **➤** Phase-dependent
- ➤ Most significant in beta band (~20 Hz)

Methods

Design

- N>24, healthy adults
- Within-subject, 2 sessions, 2 stimulation blocks per session separated by 15-minute break, 3-7 days apart

tACS Stimulation Parameters:

Anode: motor hotspot; Cathode: Pz (10-20 EEG) (7, 8)

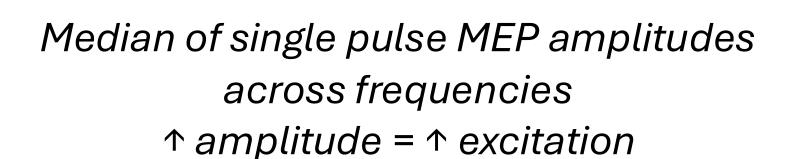
- TMS at 4 non-harmonic frequencies (online), randomly across all phases
- MEP from FDI muscle at rest, EMG

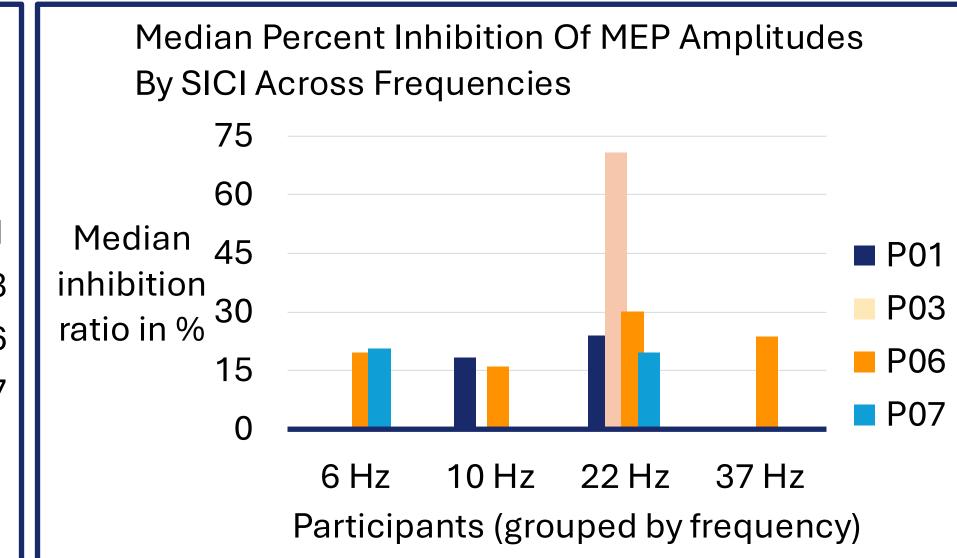
Simulation waveform: Sinusoidal

Amplitude (peak-to-peak): 1.5 mV (5)

5x7 cm sponge electrodes

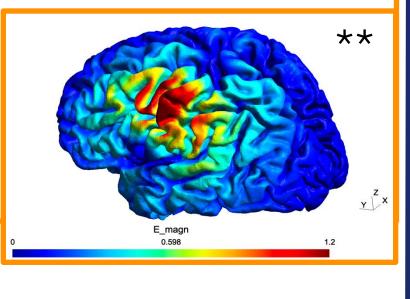
Frequency: 6, 10, 20, 37 Hz


Duration: 24 minutes


Aim

Test selective modulation of excitatory-inhibitory balance in M1 across different frequencies via possibly targeting distinct neuronal populations based on their oscillatory frequency preference and stimulation phase

Preliminary Results


Median SP MEP Values For Each Participant 2500 2000 Median 1500 ■ P01 MEP amplitude ₁₀₀₀ **P**03 in μV ■ P06 500 **P**07 10 Hz 22 Hz 37 Hz Participants (grouped by frequency)

Bar plot showing the percentage ratio of median SP-SICI MEP amplitudes by frequency. \uparrow ratio = \downarrow inhibition

- **TMS Stimulation Parameters:**
- Monophasic; 50 mm figure-of-8 coil, PA coil orientation
- Brainsight neuronavigation system
- $N \sim 25$ pulses per phase $(\Sigma \sim 200)$ (9)
- |T| = 5-7 s (7, 10)
- **SP**: **120%** of **RMT** (**10**)
- **SICI**: CS = 80% of RMT (7)
 - TS = 120% of RMT(7, 10)
 - ISI = 3 ms (7, 11)

Simulated electric field distribution in M1 using subject-specific head model (SimNIBS 4.5.0). Overlay shows field strength for tACS (A) and TMS (B) stimulation in V/m (12).

- \triangleright SP responses (mean = 0.514) were significantly higher than SICI (mean = -0.623), Mann-Whitney U test, p < 0.001, Cohen's d = 1.384
- ➤ LME model (ZScore ~ Frequency * Condition + (1|Participant), 1411 observations, 4 participants) showed significant Condition effect (p < .001) and Frequency × Condition interaction (p = .024); no main Effect of Frequency (p = .078). AIC = 3519.5, BIC = 3551.

Processing and Analysis

- EMG Filtering: bandpass filter (10-2000 Hz); notch at stimulation frequency
- Phase identification, MEP Identification, MEP Quantification, SICI Assessment
- Statistical analysis (planned): Linear mixed-effect model with fixed effects: frequency, phase, and their interaction; random effect: participant
- Controlling for: Effect of time of stimulation; order of stimulation frequency (possibility of STDP)

Expected Results & Limitations

Modulation of excitatoryinhibitory balance

Effect of Phase

- At all frequencies (5)
- 10 Hz: ↑ SP at trough
- 22 Hz: ↑ SP at/before

Effect of Frequency (strongest)

22 Hz (Beta):

- ↑ SICI vs. 6, 10 Hz
 - SP excitation vs. 6, 10 Hz

37 Hz (Low Gamma):

- ↑ SICI vs. 6, 10, 22 Hz
- ↓ SP excitation vs. 6, 10, 22 Hz

Limitations (1, 2, 8)

- Induction of spike timing dependent plasticity
- Large-scale network dynamics vs. local microcircuit modulation
- Inter-individual variability in responsiveness to tACS and TMS

References

- 1. Rostami, M., Lee, A., Frazer, A. K., Akalu, Y., Siddique, U., Pearce, A. J., Tallent, J., & Kidgell, D. J. (2025). Determining the effects of transcranial alternating current stimulation on corticomotor excitability and motor performance: A sham-controlled comparison of four frequencies. Neuroscience, 568, 12-26.
- 2. Wang, Q., Gong, A., Feng, Z., Bai, Y., & Ziemann, U. (2024). Interactions of transcranial magnetic stimulation with brain oscillations: A narrative review. Frontiers in Systems Neuroscience, 18, Article 1489949. 3. Gaugain, G., Al Harrach, M., Yochum, M., Wendling, F., Bikson, M., Modolo, J., & Nikolayev, D. (2025). Frequency-dependent phase entrainment of cortical cell types during tACS: Computational modeling evidence. Journal of Neural Engineering, 22(1), 016028. 4. Fellous, J. M., Houweling, A. R., Modi, R. H., Rao, R. P., Tiesinga, P. H., & Sejnowski, T. J. (2001). Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. Journal of Neurophysiology, 85(4), 1782–1787.
- 5. Herrmann, C. S., Rach, S., Neuling, T., & Strüber, D. (2013). Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7, 279. 6. Spampinato, D. A., Ibanez, J., Rocchi, L., & Rothwell, J. (2023). Motor potentials evoked by transcranial magnetic stimulation: Interpreting a simple measure of a complex system. The Journal of Physiology, 601(13), 2911–2932. 7. Guerra, A., Pogosyan, A., Nowak, M., Tan, H., Ferreri, F., Di Lazzaro, V., & Brown, P. (2016). Phase dependency of the human primary motor cortex and cholinergic inhibition cancelation during beta tACS. Cerebral Cortex, 26(10), 3977–3990.

peak

- 8. Wischnewski M., Schutter DJLG., Nitsche MA. (2019). Effects of beta-tACS on corticospinal excitability: A meta-analysis. *Brain Stimulation*, 12(6):1381-1389. 9. Chang, W. H., Fried, P. J., Saxena, S., Jannati, A., Gomes-Osman, J., Kim, Y.-H., & Pascual-Leone, A. (2016). Optimal number of pulses as outcome measures of neuronavigated transcranial magnetic stimulation. Clinical Neurophysiology, 127(8), 2892–2897.
- 12. Thielscher, A., Antunes, A. and Saturnino, G.B. (2015). Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? IEEE EMBS 2015, Milano, Italy.
- 10. de Albuquerque, L. L., Pantovic, M., Wilkins, E. W., Morris, D., Clingo, M., Boss, S., Riley, Z. A., & Poston, B. (2024). Exploring the influence of inter-trial interval on the assessment of short-interval intracortical inhibition. Bioengineering (Basel), 11(7), 645. 11. Dyke, K., Kim, S., Jackson, G. M., & Jackson, S. R. (2018). Reliability of single and paired pulse transcranial magnetic stimulation parameters across eight testing sessions. Brain Stimulation, 11(6), 1393-1394.