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Background
Disrupted brain network activity in Alzheimer’s disease (AD) is a potential therapeutic target 

for transcranial direct current stimulation (tDCS)1. However, optimal stimulation parameters, 

such as electrode position and stimulation intensity, and their effect on brain network 

dynamics, are not known and may differ for individuals. To address these issues, we developed 

a novel approach to explore optimal tDCS strategies by simulating their effects on brain 

network activity in a computational neural mass network model2. Promising strategies will 

then be selected for simultaneous tDCS-MEG sessions in AD patients to ascertain their effect.

Methods

Conclusion
We present a novel model-guided tDCS approach for optimizing, 

personalizing and validating treatment strategies in AD patients.

Preliminary results
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Aim
To optimize tDCS strategies in AD patients by simulating their effect in a 

computational AD model, and verify effects with simultaneous tDCS-MEG.

Shown above are modelled effects of two tDCS strategies (orange) to counter AD damage over 

time (blue, ADD algorithm3). Each strategy has its corresponding current flow modelling on the 

left of the row. They differ in their capability to retain normal power (relative lower alpha    

(8-10 Hz) and broadband (0.5-48 Hz) power and functional connectivity (AEC, 8-13 Hz) levels.

This figure presents simultaneous tDCS-MEG pilot data from healthy volunteer, both before 

(left) and after (right) artefact filtering (tSSS5). Outlined in orange is a typical artefact during 

the ramp-up period of the stimulation, while outlined in green is activity during 1mA tDCS.

For both simulated and pilot scan data, we detected changes in areas distant from the 

stimulated region. Different electrode montages and stimulation intensities produce different 

network effects. However, further analysis is needed to optimise stimulation parameters. 

The computational model 

consists of 78 neural 

masses, which describe 

the behaviour of large 

groups of interconnected 

excitatory and inhibitory 

neurons, and are coupled 

according to human brain 

network topology.

The model generates MEG-

like physiological data and 

can simulate the damage 

caused by AD over time3, 
such as oscillatory slowing.

The effects of tDCS are simulated by changing 

the excitability of the targeted neuronal 

masses, guided by current flow modelling4. 

Virtual stimulation strategies are considered 

successful when they are able to steer key 

quantitative neurophysiological measures such as 

spectral power and functional connectivity in 

the ADD condition towards healthy values1.
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Modelled tDCS strategies can be 

personalised by using an individual’s 

functional (MEG-based) connectivity 

matrix. In the final stages of the study, 

the most promising general and 

personalized interventions will be 

compared in mild-to-moderate AD

patients by simultaneous tDCS-MEG.
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