

The effects of thalamic temporal interference stimulation on steadystate visually evoked potentials

Tobias Raufeisen^{1,3}, Prince Okyere^{1,2}, Valeria Jaramillo^{1,2,4}, Derk-Jan Dijk^{1,3,4}, Ines R. Violante ⁵, Ullrich Bartsch^{1,3,4}

1 School of Biosciences, 2 School of Psychology, 3 Surrey Sleep Research Centre, University of Surrey; 4 UK Dementia Research Institute, Care Research and Technology; 5 King's College London

Introduction

- **Temporal interference stimulation** (TIS) is a non-invasive technique that enables deep brain neuromodulation using an envelope generated by two high-frequency electric currents¹
- The **thalamus** plays a critical role in sensory processing, particularly in **visual perception** and oscillatory alpha activity (8 – 12 Hz)
- Steady-State Visually Evoked Potentials (SSVEPs) are brain responses to repetitive visual stimuli, largely driven by thalamocortical interactions²
- We probe SSVEP dynamics using thalamic TIS.

 $\overline{E}_1(t) + \overline{E}_2(t)$

10 Hz

Methods

Participants: N = 21 (F = 9), age = 18-34 (m = 23)

- > FEM: Finite Element Method (FEM) modelling predicted optimal TIS montage for achieving the highest possible EM field strength in the thalamus Montage used: 1. FC5 + F8 ; 2. CP5 + P8
- > SSVEP: 10 Hz flicker was presented using PsychoPy on a PC monitor (60 Hz refresh rate). Stimulus times were measured using an optical sensor (StimTrak, BrainProducts, DE)
- **Electrode Digitisation**: TIS electrode positions were recorded against skull landmarks using Brainsight Neuronavigation (BrainBox, UK), EEG electrode positions using CapTrak (Brain Products, DE)
- > HD-EEG: High-density EEG with 64 active electrodes (actiChamp, actiCap, BrainProducts) was recorded at 500 Hz sampling rate using LabStreamingLayer (labstreaminglayer.org)
- > **TIS**: Temporal Interference Stimulation was delivered using a TI stimulator (TI Solutions AG, CH) with two alternating current sources at: $f_1 = 2000 \text{ Hz}$, $f_2 = 2130 \text{ Hz}$ Hz, , $\Delta f = 130 \text{ Hz}$

> Conditions:

- > TIS ($\Delta f = 130 \text{ Hz}, I = 2 \text{ mA}$)
- \rightarrow High-frequency control ($\Delta f = 0 \text{ Hz}, I = 2 \text{ mA}$)
- ightharpoonup OFF ($\Delta f = 0 \text{ Hz}$, I = 0 mA)
- > 60 trials per condition, counterbalanced

oo thais per condition, counterbalanced	
Temporal Interference	High-frequenc
f_1 = 2000 Hz, 2 mA	$f_1 = 2000 \text{ Hz}, 2 \text{ m}$
$f_2 = 2130 \text{ Hz}, 2 \text{ mA}$	$f_2 = 2000 \text{ Hz}, 2 \text{ m}$

60 cm

<u>Off</u> $f_1 = 0 \text{ Hz}, 0 \text{ mA}$ $f_2 = 0 \text{ Hz}, 0 \text{ mA}$

Results

60 x

Minimal EEG artefacts during TIS

- > TIS artefacts are strongest close to TIS electrode positions
- > EEG artefact rejection is possible during ongoing TIS trials
- > 1 Hz high-pass filter, 150 Hz low-pass filter, notch filter, ICA eye-blink removal

Flicker evokes reliable SSVEP

TIS increases SSVEP response power

- SSVEP is strongest occipitally
- Occipital / Left-parietal SSVEP is significantly stronger during TIS compared to OFF (cluster-corrected, p = .007
- > HF-Control shows a trend towards increased occipital SSVEP (clustercorrected, p = .088)
- ➤ No significant difference in power between TIS and High-Frequency Control)

TIS increases phase-locking to visual stimulus

- Phase-locking to visual stimulus is highest occipitally
- ➤ Left occipital electrodes show a trend towards increased phaselocking during TIS compared to HF-Control (cluster-corrected, p = .079)
- > A linear mixed-effects model including all trials shows a significant difference between TIS and HF-Control (PLV ~ Condition + Trial + (1|ID) t(2369)=2.04, p=.04)

TIS decreases frontal alpha-band synchronisation

Phase-locking at stimulus frequency between brain regions is highest occipitally/parietally

Phase-locking within frontal electrodes is significantly decreased during TIS compared to OFF (FDR-corrected LMMs between region pairs, PLV ~ Condition + (1|ID), p = .003)

Conclusion

- > We successfully implemented concurrent HD- EEG and TIS with minimal artifacts
- > FEM predicts EM field strengths of up to 0.6 V/m (AM envelope amplitude) in the posterior thalamus
- > Thalamic TIS increases the amplitude of the SSVEP response
- > HF stimulation shows a trend towards increasing SSVEP amplitude
- > Thalamic TIS increases the phase-locking of occipital EEG to the SSVEP stimulus
- > Thalamic TIS decreases alpha-band synchronisation in frontal areas