

University of Nottingham Precision Imaging

Investigating cortical motor representations in response to intermittent theta burst stimulation (iTBS) using 7T fMRI

Caitlin Smith^{a,b}, Katherine Dyke^a, Michael Asghar^c, Rosa Sánchez-Panchuelo^c, Susan Francis^{c,b}, Stephen Jackson^{a,d,b}

^aSchool of Psychology, University of Nottingham ^bPrecision Imaging Beacon, School of Medicine, University of Nottingham ^cSir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham ^dInstitute of Mental Health, School of Medicine, University of Nottingham

Introduction

- Functional representations within the motor cortex are stable over time [1], yet dynamic and susceptible to input. For instance, rapid and long-term functional changes can be seen in response to removal or introduction of input (e.g. digit fusion, sensory stimulation, cortical lesions) [2].
- High-frequency repetitive transcranial magnetic stimulation (hf-rTMS) is a method recently found to alter functional cortical maps. Specifically, recent

animal research has demonstrated that hf-rTMS to the visual cortex can induce a brief destabilisation of functional cortical representations with enhanced cortical excitability and increased spontaneous activity [3].

Using voltage-sensitive dye, weakened intracortical inhibitory mechanisms were demonstrated in response hf-rTMS, which were proposed to result in increased cortical excitability and early plasticity processes. Moreover, functional maps became malleable and sensitive to visual input, suggesting hf-rTMS may prime the cortex ready for plasticity and learning [3,4].

Figure of merit

However, it is unclear if hf-rTMS can alter or induce destabilisation of human functional cortical maps.

Methods

Participants

- 21 healthy right-handed participants (4M,17F mean age 23.1 years, lacksquarerange 19.9 - 34.1). 2 participants were removed due to poor data quality.
- 11 participants were assigned to the active condition and 8 participants lacksquarewere assigned to the control condition.

Parameters

- MRI parameters (7T Philips, Achieva; 32-channel head coil)
- **PSIR** anatomical scan
 - 224 slices, TR = 6.3 ms, TE = 2.7 ms
- **fMRI** single-shot 2D T2*-weighted GE-EPI sequence

fMRI Travelling Wave Tapping task

Participants made right-hand tapping movements from digits 1 (thumb) to digit 5 (pinky). This occurred in order (D1-D5) and in reverse (D5-D1) for 8 cycles

- 26 slices (1.5 mm thickness), TR = 2 s, TE = 25 ms
- Travelling-wave finger tapping task, right hand
- iTBS (Magstim Rapid² system (Dyfed, UK), 70mm figure-of-8 coil)

Analysis

- Pipeline developed by O'Neill et al. [5] using mrTools [6]
- Travelling-wave scans for the right hand were combined to cancel the haemodynamic delay [7].
- Calculated the following metrics and analysed using t-tests:

Blurring metric [8]	Figure of merit [9]
How well digit regions of interest from each participant overlap in a standard space	How well each subject's digits match to the standard probabilistic atlas of digit representations [6].
 Complete overlap of digit areas = 0 	 Doesn't match atlas (spread) = 0 Complete match of atlas = 1

Conclusions

- Preliminary data suggest iTBS has no influence
 - on how well motor cortical digit representations

Results

Blurring metric

No significant differences before and after iTBS for each No significant differences before and after iTBS for each |

standard space Only D5 showed significant differences in blurring and figure of merit between active and control groups • However, not clear if due to stimulation effects or because the D5 cortical representation is

References

[1] Sánchez-Panchuelo RM et al., (2012). Journal of Neuroscience 32:15815-15822; [2] Kaas JH (1991). Ann. Rev. Neurosci 14:137-167; [3] Kozyrev V et al., (2014). PNAS 111:13553-13558; [4] Kozyrev V et al., (2018). PNAS 115:6476-6481; [5] O'Neill GC et al., (2020). *NeuroImage* 217:116880; [6] Gardner JL et al., (2018). Zenodo; [7] Besle J et al., (2013). Journal of Neurophysiology 109:2293-2305; [8] Fischl B et al., (1999). *Hum. Brain Mapp.* 8:272-284; [9] O'Neill GC., (2017). *NeuroImage* 146:667-678