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4. Results

Gassification Accuracy (CA)
o 7 of 12 participants (1, 2, 4, 5, 7, 8, 9) achieved CAs above 50 and were classified as “controllers”.

/ 1. Introduction

« C(Clinical trials using Brain-Computer Interface (BCI) for stroke rehabilitation have shown promising results, yet
clinical adoption is lacking [1]. Unsupervised at-home BCls may increase clinical use by reducing the burden on

healthcare providers and increasing patient agency. Classification Accuracy of Participants Over time (Increasing Training)
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« Participants imagined right-handed finger Slock Number (Increasing Training)
movement (v) and a cold, dead, detached right Cue 1.25s Classification Accuracy over 50 =*= Controller =*= Non-Controller
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within controllers — but not within non-controllers. These

3. Analysis

measured at FC3 and FCA4.

Lateralisation of brain activity was operationalised as the difference in power

data support H2.
« (Controllers had significantly stronger lateralisation of

To investigate the influence of training on the EEG activity produced by

brain activity in the alpha and beta power band

participants, the averaged Riemannian distance — also called Distinctiveness compared to non-controllers.

6] — of the EEG activity produced by the two tasks was analysed.

A trained experimenter inspected the raw data and processed outputs to
ensure the automatic processing was adequate.

The EEG data was preprocessed using an automated pipeline:

Distinctiveness between the mental imagery conditions
increases with training and predicts CA.

« The Distinctiveness of brain activity between the two mental imagery conditions increases with training.
* The Distinctiveness is a better predictor of CA than is training time alone.
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5. Conclusion

It is possible to obtain control (improving CA) over an in-home BCI| using a 16-electrode, wireless, EEG system
Over time controllers produced more distinct and lateralized patterns of activity.

Spectral analysis showed that the power of alpha and beta oscillations in the brain measured at FC3 and FC4 of
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power was significantly different between controllers and non-controllers, and within controllers, replicating similar
results in literature [5].

Future development of this work will aim to improve upon the extent and speed of learning to control the BCI and
thus facilitates the development of new neurorehabillitation technologies.
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