

Investigating the temporality of gesture/speech integration with transcranial magnetic stimulation: Building of a study

Kandana Arachchige, K.¹^{*}, Simoes Loureiro, I.¹ & Lefebvre, L.¹

¹Department of Cognitive Psychology and Neuropsychology, University of Mons, Belgium

Introduction

Gesture/speech integration (GSI) has been increasingly studied over the past few years. On the one hand, co-speech iconic gestures entertain a semantic relationship with the utterance they accompany. Several studies have shown improvement in reaction times when presenting matching iconic gestures and verbal utterance. On the other hand, these gestures entertain a particular temporal relationship with the accompanying utterance, temporal synchrony being essential for a successful integration of the presented information.

Previous behavioural and electrophysiological studies have shown the importance of temporal synchrony, but they do not allow a precise determination of the temporality of the cerebral neural processes.

Aim of the study

Determine gesture/speech integration temporality in brain regions that have been shown to be implicated in this integration.

Methodology Behavioural task: Gender classification task

- Healthy participants
- Aged between 18-38 y/o
- Must complete a medical screening questionnaire (no personal of familial history of epilepsy)

Participants

- Absence of visual hearing or \bullet impairments
- and/or neurological Absence of psychiatric conditions

Implicit behavioural measure of gesture/speech integration: faster to correctly classify

the voices when the presented gesture matches the heard word

Transcranial magnetic stimulation (TMS)

Online single pulse TMS during Gender classification task at -200, -120, 0, +120 and +200ms of stimulus presentation

Threshold determination

Single pulses on left primary cortex

Experimental phase

Key areas previously shown to be involved in gesture/speech integration

Left posterior superior temporal sulcus

Left inferior parietal lobule Left anterior inferior frontal gyrus

MNI coordinates : -40X, -15Y, 67Z (Maegjerman et al., 2019)

Expectations

Region presumed to be linked with the increase in spatial attention MNI coordinates : - 27X, -78Y, 33Z (Holle et al., 2008)

Gesture/speech integration zone thought to be a general unification site for language comprehension MNI coordinates : -46X, 29Y, 23Z (Willems, et al., 2007)

We expect to see a variation in performances related to the timing of TMS stimulation, allowing us to gain more knowledge on the timing of neural processes while they take place.

Bibliography

Holle, H., Obleser, J., Rueschemeyer, S-A., & Gunter, T. (2010). Integration of iconic gestures and speech in left superior temporal areas boosts speech comprehension under adverse listening conditions. *NeuroImage, 49*(1), p.587-884

Maegherman, G;, Nuttall, H., Devlin, J., & Adank, P. (2019). Motor imagery of speech: The involvement of primaty motor cortex in manual and articulatory motor imagery. Frontiers in Human *Neuroscience, 13*, p.1-10

Willems, R., Özyürek, A., & Hagoort, P. (2007). When language meets action: The neural integration of gesture and speech. Cerebral Cortex, 17(10), p.2322-2333