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Why does the brain’s response to repeated identical 
TMS pulses vary and why does it matter?

• PRIME is an end-to-end deep probabilistic convolutional neural network for
  predicting motor excitability states from EEG signals in real-time
• PRIME shows promise for enhancing TMS neuromodulatory effects in 

closed-loop brain state-dependent brain stimulation interventions

Summary

• Transcranial magnetic stimulation (TMS) is widely used in brain research and 
   treatment of brain dysfunctions.
 
• TMS effects are dependent on the instantaneous brain excitability state.This 
  leads to large variability in immediate and longer-term stimulation responses. 

• Exploiting this variability through personalized adaptive brain state-dependent TMS
  can optimize the efficacy of TMS applications across different clinical conditions [1].

Our goal: From open-loop TMS to machine learning-
based closed-loop brain state-dependent TMS 

Our approach: PRIME 
(Probabilistic Regression for Inferring Motor Excitability) 

open-loop TMS

Model training: Transfer learning & real-time expanding 
window continual finetuning

Next trial MEP prediction and stimulation decision
real-time EEG preprocessing PRIME predicted MEP size stimulation decision

offline pretraining 

pretraining subjects 
(n=30 à 700-800 trials) 

online continual learning 

test subject 
 

real-time signal preprocessing 
 

PRIME 
 

PRIME 
 

Model architecture 

open-loop brain state-
dependent TMS

closed-loop brain state-
dependent TMS

EEG data

TMS single 
pulses

EMG data

fixed stimulation
parameters

adjust stimulation
parameters to an EEG
marker (e.g. phase 
of an oscillation)

adjust stimulation
parameters until a target 
marker is reached
(e.g. MEP amplitude)
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PRIME demonstrates higher prediction performance 
than ablated versions 
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Model uncertainty analysis of an example subject

PRIME shows higher prediction accuracy than non-
adaptive baseline  

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 a
cc

ur
ac

y

uncertainty plots.   
0 200 400 600 800

trial index

0.0

0.2

0.4

0.6

0.8

1.0

M
E

P 
am

pl
iu

de

high
low chance level

6 2 7 9 10 4 1 3 8 5
subject

0.5

0.6

0.7

0.8

0.9

1.0

 te
st

 a
cc

ur
ac

y

baseline [4]  
no transfer learning 
PRIME 

chance level

no
 tra

ns
fer

 le
arn

ing

PRIM
E

 
ba

se
lin

e [
4]

0.80.60.40.20
0

1.0

0.8

0.6

0.4

0.2

1.00.80.60.40.20
0

5

4

3

2

1

0

4

3

2

1

2 10 3 4 5

5

[1] Humaidan et al., (2024) [2] Lawhern et al., (2018) [3] Gu et al., (2021) [4] Haxel et al., (2024) [5] Laves et al., (2021).

• Baseline: Feature-based binary classification (LR, RF, SVM) with temporal 
  sequential split, limited to the most extreme trials (highest and lowest 200 MEP 
  amplitudes).

• Differences in prediction performance between subjects from the same dataset 
  are consistent across methods. 
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Aggregate prediction performance 

Trial-by-trial prediction performance 
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