A naturalistic trial comparing the efficacy of uni-and bi-lateral theta burst stimulation in treating major depression, a study protocol

Antoinette Broomfield1, Molly Watson1,2, Abir Gebara1, Manon Desforges1, Kelly Schincariol1, Jyllenna Wilke1,2, Denni Gokbayrak1,3, Shehan Katukawita3, Asif Khan3, Zafirri J. Daskalakis3, Lisa McMurray4, Sara Tremblay1,2,4
1. The Royal’s Institute of Mental Health Research, Ottawa, Canada; 2. Neuroscience Department, Carleton University, Ottawa, Canada; 3. The Royal Ottawa Mental Health Centre, Ottawa, Canada; 4. Département de psychiatrie et psychologie, Université du Québec en Outaouais, Gatineau, Canada; 5. Psychology Department, Carleton University, Ottawa, Canada; 6. Biology Department, University of Ottawa, Ottawa, Canada; 7. Department of Psychiatry, University of California San Diego, USA

BACKGROUND

• Repetitive transcranial magnetic stimulation (rTMS) is recognized as a major treatment for major depressive disorder (MDD)[1].
• Technological advancements have led to theta burst stimulation (TBS), which reduces treatment time 15 fold, whilst maintaining clinical efficacy[2,3].
• It remains to be determined if TBS is more efficient when applied to one or both prefrontal hemispheres, i.e. unilateral, left dorsolateral prefrontal cortex (DLPFC) and bilateral, left and right DLPFC.
• Very few studies have investigated rTMS maintenance protocols.
• TMS and electroencephalography (TMS-EEG) can be used to track excitability changes following TBS[4,5].

OBJECTIVES

• Compare efficacy of bilateral and unilateral TBS.
• Investigate if baseline capacity for plasticity, assessed with TMS-EEG, is predictive of the clinical response to TBS.
• Compare efficacy of a fixed versus a flexible schedule of maintenance over 6 months.

METHOD

• Participants: 256, male and female, 18+ with primary MDD diagnosis.
• Main inclusion criteria: No symptom improvement after ≥ 1 but ≤ 7 adequate antidepressant trials in current depressive episode.
• Treatment: 5 days per week over 4 to 6 weeks with a Magpro X100 and active/sham 865 cooled-coil.
• Left DLPFC: standard intermittent TBS (iTBS), 80% AMT, 190 sec
• Right DLPFC: standard continuous TBS (cTBS), 80% AMT, 40 sec
• Double-blinded study design:
 • Unilateral = active iTBS followed by sham cTBS
 • Bilateral = active iTBS followed by active cTBS
• Main outcome measures: HRSD-17, MADRS
• Neurorunavation (Brainsight, Rogue Research inc.): Coordinates (x, y, z: +/-38, 44, 26)
• If response or remission is achieved, participants are randomized into either a fixed or flexible 6-month maintenance phase.

DATA ANALYSIS

• EEG data is analyzed using EEGLAB and Matlab (Mathworks Inc)
• Clinical scores and neurophysiological measures will be analyzed using two-way ANOVAs for repeated measures.
• Prediction of response is assessed using correlational analyses and logistic regression models.
• Categorical outcomes (response/remission rates) are examined using Chi-Squared tests.

REFERENCES

RELEVANCE AND IMPACT

• First study comparing unilateral and bilateral TBS in a largescale naturalistic setting.
• Could help elucidate the mechanisms of action of TBS in the DLPFC
• Researching predictors of response could be beneficial in establishing bespoke protocols for individual brain response, increase efficacy rates and save time and money.
• Establish optimal TMS maintenance schedules.